¥j¤j ¥i¥ÎwordÂà´«3.3®É¶¡§Ç¦C¤ÀªR 3.3.1®É¶¡§Ç¦C·§z 1. °ò¥»·§©À (1)¤@¯ë·§©À¡G¨t²Î¤¤¬Y¤@ÅܼƪºÆ[´úÈ«ö®É¶¡¶¶§Ç¡]®É¶¡¶¡¹j¬Û¦P¡^±Æ¦C¦¨¤@Ó¼ÆÈ§Ç¦C¡A®i¥Ü¬ã¨sª«¥ó¦b¤@©w®É´Á¤ºªºÅܰʹLµ{¡A±q¤¤´M§ä©M¤ÀªR¨Æª«ªºÅܤƯS¼x¡Bµo®iÁͶթM³W«ß¡C¥¦¬O¨t²Î¤¤¬Y¤@Åܼƨü¨ä¥L¦UºØ¦]¯À¼vÅTªºÁ`µ²ªG¡C (2)¬ã¨s¹ê½è¡G³q¹L³B²z¹w´ú¥Ø¼Ð¥»¨ªº®É¶¡§Ç¦C¸ê®Æ¡AÀò±o¨Æª«ÀH®É¶¡¹Lµ{ªººtÅܯS©Ê»P³W«ß¡A¶i¦Ó¹w´ú¨Æª«ªº¥¼¨Óµo®i¡C¥¦¤£¬ã¨s¨Æª«¤§¶¡¬Û¤¬¨Ì¦sªº¦]ªGÃö«Y¡C (3)°²³]°ò¦¡GºD©Êì«h¡C§Y¦b¤@©w±ø¥ó¤U¡A³Q¹w´ú¨Æª«ªº¹L¥hÅܤÆÁͶշ|©µÄò¨ì¥¼¨Ó¡C·t¥ÜµÛ¾ú¥v¸ê®Æ¦s¦bµÛ¬Y¨Ç¸ê°T¡A§Q¥Î¥¦Ì¥i¥H¸ÑÄÀ»P¹w´ú®É¶¡§Ç¦Cªº²{¦b©M¥¼¨Ó¡C ªñ¤j»·¤pì²z¡]®É¶¡¶Vªñªº¸ê®Æ¼vÅT¤O¶V¤j¡^©MµL©u¸`©Ê¡BµLÁͶթʡB½u©Ê¡B±`¼Æ¤è®tµ¥¡C (4)¬ã¨s·N¸q¡G³\¦h¸gÀÙ¡Bª÷¿Ä¡B°Ó·~µ¥¤è±ªº¸ê®Æ³£¬O®É¶¡§Ç¦C¸ê®Æ¡C ®É¶¡§Ç¦Cªº¹w´ú©Mµû¦ô§Þ³N¬Û¹ï§¹µ½¡A¨ä¹w´ú±¡´º¬Û¹ï©ú½T¡C ¤×¨äÃöª`¹w´ú¥Ø¼Ð¥i¥Î¸ê®Æªº¼Æ¶q©M«~½è¡A§Y®É¶¡§Ç¦Cªºªø«×©M¹w´úªºÀW²v¡C 2. ÅܰʯSÂI (1)ÁͶթʡG¬YÓÅܼÆÀHµÛ®É¶¡¶i®i©Î¤Þ¼ÆÅܤơA§e²{¤@ºØ¤ñ¸û½wºC¦Óªø´Áªº«ùÄò¤W¤É¡B¤U°¡B°±¯dªº¦P©Ê½èÅܰÊÁͦV¡A¦ýÅܰʴT«×¥i¯à¤£µ¥¡C (2)¶g´Á©Ê¡G¬Y¦]¯À¥Ñ©ó¥~³¡¼vÅTÀHµÛ¦ÛµM©u¸`ªº¥æ´À¥X²{°ª®p»P§C¨¦ªº³W«ß¡C (3)ÀH¾÷©Ê¡GÓ§O¬°ÀH¾÷ÅܰʡA¾ãÅé§e²Îp³W«ß¡C (4)ºî¦X©Ê¡G¹ê»ÚÅܤƱ¡ªp¤@¯ë¬O´XºØÅܰʪºÅ|¥[©Î²Õ¦X¡C¹w´ú®É¤@¯ë³]ªk¹LÂo°£¥h¤£³W«hÅܰʡA¬ð¥X¤Ï¬MÁͶթʩM¶g´Á©ÊÅܰʡC 3. ¯S¼xÃѧO »{ÃѮɶ¡§Ç¦C©Ò¨ã¦³ªºÅܰʯS¼x¡A¥H«K¦b¨t²Î¹w´ú®É¿ï¾Ü±Ä¥Î¤£¦Pªº¤èªk¡C (1)ÀH¾÷©Ê¡G§¡¤Ã¤À§G¡BµL³W«h¤À§G¡A¥i¯à²Å¦X¬Y²Îp¤À§G¡C(¥Î¦]Åܼƪº´²ÂI¹Ï©Mª½¤è¹Ï¤Î¨ä¥]§tªº¥¿ºA¤À§GÀËÅçÀH¾÷©Ê¡A¤j¦h¼ÆªA±q¥¿ºA¤À§G¡C) (2)¥Ã©Ê¡G¼Ë¥»§Ç¦Cªº¦Û¬ÛÃö¨ç¼Æ¦b¬Y¤@©T©w¤ô¥½uªþªñÂ\°Ê¡A§Y¤è®t©M¼Æ¾Ç´Á±æÃ©w¬°±`¼Æ¡C ¼Ë¥»§Ç¦Cªº¦Û¬ÛÃö¨ç¼Æ¥u¬O®É¶¡¶¡¹jªº¨ç¼Æ¡A»P®É¶¡°_ÂIµLÃö¡C¨ä¨ã¦³¹ïºÙ©Ê¡A¯à¤Ï¬M¥Ã§Ç¦Cªº¶g´Á©ÊÅܤơC ¯S¼xÃѧO§Q¥Î¦Û¬ÛÃö¨ç¼ÆACF¡G£lk=£^k/£^0 ¨ä¤¤£^k¬Oytªºk¶¥¦Û¨ó¤è®t¡A¥B£l0=1¡B-1<£lk<1¡C ¥Ã¹Lµ{ªº¦Û¬ÛÃö«Y¼Æ©M°¾¦Û¬ÛÃö«Y¼Æ³£·|¥H¬YºØ¤è¦¡°I´îÁͪñ©ó0¡A«eªÌ´ú«×·í«e§Ç¦C»P¥ý«e§Ç¦C¤§¶¡Â²³æ©M±`³Wªº¬ÛÃöµ{«×¡A«áªÌ¬O¦b±±¨î¨ä¥L¥ý«e§Ç¦Cªº¼vÅT«á¡A´ú«×·í«e§Ç¦C»P¬Y¤@¥ý«e§Ç¦C¤§¶¡ªº¬ÛÃöµ{«×¡C ¹ê»Ú¤W¡A¹w´ú¼Ò«¬¤j³£Ãø¥Hº¡¨¬³o¨Ç±ø¥ó¡A²{¹êªº¸gÀÙ¡Bª÷¿Ä¡B°Ó·~µ¥§Ç¦C³£¬O«Déwªº¡A¦ý³q¹L¸ê®Æ³B²z¥i¥HÅÜ´«¬°¥Ãªº¡C 4. ¹w´úÃþ«¬ (1)ÂI¹w´ú¡G½T©w°ß¤@ªº³Ì¦n¹w´ú¼ÆÈ¡A¨äµ¹¥X¤F®É¶¡§Ç¦C¥¼¨Óµo®iÁͶժº¤@Ó²³æ¡Bª½±µªºµ²ªG¡C¦ý±`²£¥Í¤@Ó«D¹sªº¹w´ú»~®t¡A¨ä¤£½T©wµ{«×¬°ÂI¹w´úȪº¸m«H°Ï¶¡¡C (2)°Ï¶¡¹w´ú¡G¥¼¨Ó¹w´úȪº¤@Ӱ϶¡¡A§Y´Á±æ§Ç¦Cªº¹ê»ÚÈ¥H¬Y¤@·§²v¸¨¤J¸Ó°Ï¶¡½d³ò¤º¡C°Ï¶¡ªºªø«×¶Ç»¼¤F¹w´ú¤£½T©w©Êªºµ{«×¡A°Ï¶¡ªº¤¤ÂI¬°ÂI¹w´úÈ¡C (3)±K«×¹w´ú¡G§Ç¦C¥¼¨Ó¹w´úȪº¤@Ó§¹¾ãªº·§²v¤À§G¡C®Ú¾Ú±K«×¹w´ú¡A¥i«Ø¥ß¥ô·N¸m«H¤ô·Çªº°Ï¶¡¹w´ú¡A¦ý»ÝnÃB¥~ªº°²³]©M¯A¤Î½ÆÂøªºpºâ¤èªk¡C 5. °ò¥»¨BÆJ (1)¤ÀªR¸ê®Æ§Ç¦CªºÅܤƯS¼x¡C (2)¿ï¾Ü¼Ò«¬§Î¦¡©M°Ñ¼ÆÀËÅç¡C (3)§Q¥Î¼Ò«¬¶i¦æÁͶչw´ú¡C (4)µû¦ô¹w´úµ²ªG¨Ã×¥¿¼Ò«¬¡C 3.3.2ÀH¾÷®É¶¡§Ç¦C ¨t²Î¤¤¬Y¤@¦]¯ÀÅܼƪº®É¶¡§Ç¦C¸ê®Æ¨S¦³½T©wªºÅܤƧΦ¡¡A¤]¤£¯à¥Î®É¶¡ªº½T©w¨ç¼Æ´yz¡A¦ý¥i¥H¥Î·§²v²Îp¤èªk´M¨D¤ñ¸û¦X¾AªºÀH¾÷¼Ò«¬ªñ¦ü¤Ï¬M¨äÅܤƳW«ß¡C(¤Þ¼Æ¤£ª½±µ§t¦³®É¶¡ÅܼÆ,¦ýÁô§t®É¶¡¦]¯À) 1¡D ¦Û¦^ÂkAR(p)¼Ò«¬ ¡]R¡G¼Ò«¬ªº¦WºÙ P¡G¼Ò«¬ªº°Ñ¼Æ¡^¡]¦Û¤v¼vÅT¦Û¤v¡A¦ý¥i¯à¦s¦b»~®t¡A»~®t§Y¨S¦³¦Ò¼{¨ìªº¦]¯À¡^ (1)¼Ò«¬§Î¦¡¡]£`t¶V¤p¶V¦n¡A¦ý¤£¯à¬°0¡G£`¬°0ªí¥Ü¥u¨ü¥H«eYªº¾ú¥vªº¼vÅT¤£¨ü¨ä¥L¦]¯À¼vÅT¡^ yt=£p1yt-1+£p2yt-2+¡K¡K+£ppyt-p+£`t ¦¡¤¤°²³]¡GytªºÅܤƥDn»P®É¶¡§Ç¦Cªº¾ú¥v¸ê®Æ¦³Ãö¡A»P¨ä¥L¦]¯ÀµLÃö¡F £`t¤£¦P®É¨è¤¬¤£¬ÛÃö¡A£`t»Pyt¾ú¥v§Ç¦C¤£¬ÛÃö¡C ¦¡¤¤²Å¸¹¡Gp¼Ò«¬ªº¶¥¦¸¡Aº¢«áªº®É¶¡¶g´Á¡A³q¹L¹êÅç©M°Ñ¼Æ½T©w¡F yt·í«e¹w´úÈ¡A»P¦Û¨¹L¥hÆ[´úÈyt-1¡B¡K¡Byt-p¬O¦P¤@§Ç¦C¤£¦P®É¨èªºÀH¾÷ÅܼơA¬Û¤¬¶¡¦³½u©ÊÃö«Y¡A¤]¤Ï¬M®É¶¡º¢«áÃö«Y¡F yt-1¡Byt-2¡B¡K¡K¡Byt-p¦P¤@¥Ã§Ç¦C¹L¥hpӮɴÁªºÆ[´úÈ¡F £p1¡B£p2¡B¡K¡K¡B£pp¦Û¦^Âk«Y¼Æ¡A³q¹Lpºâ±o¥XªºÅv¼Æ¡Aªí¹Fyt¨Ì¿à©ó¹L¥hªºµ{«×¡A¥B³oºØ¨Ì¿àÃö«YùÚ©w¤£ÅÜ¡F £`tÀH¾÷¤zÂZ»~®t¶µ¡A¬O0§¡È¡B±`¤è®t£m2¡B¿W¥ßªº¥ÕÂø°T§Ç¦C¡A³q¹L¦ôp«ü©wªº¼Ò«¬Àò±o¡C (2)ÃѧO±ø¥ó ·ík>p®É¡A¦³£pk=0©Î£pkªA±qº¥ªñ¥¿ºA¤À§GN(0,1/n)¥B(|£pk|>2/n1/2)ªºÓ¼Æ≤4.5%¡A§Y¥Ã®É¶¡§Ç¦Cªº°¾¬ÛÃö«Y¼Æ£pk¬°p¨BºI§À¡A¦Û¬ÛÃö«Y¼Ærk³v¨B°I´î¦Ó¤£ºI§À¡A«h§Ç¦C¬OAR(p)¼Ò«¬¡C ¹ê»Ú¤¤¡A¤@¯ëAR¹Lµ{ªºACF¨ç¼Æ§e³æÃ仼´î©Îªý¥§®¶Àú¡A©Ò¥H¥ÎPACF¨ç¼Æ§P§O(±qp¶¥¶}©lªº©Ò¦³°¾¦Û¬ÛÃö«Y¼Æ§¡¬°0)¡C (3)¥Ã±ø¥ó ¤@¶¥¡G|£p1|<1¡C¤G¶¥¡G£p1+£p2<1¡B£p1-£p2<1¡B|£p2|<1¡C£p¶V¤j¡A¦Û¦^Âk¹Lµ{ªºªi°Ê¼vÅT¶V«ù¤[¡C (4)¼Ò«¬·N¸q ¶È³q¹L®É¶¡§Ç¦CÅܼƪº¦Û¨¾ú¥vÆ[´úȨӤϬM¦³Ãö¦]¯À¹ï¹w´ú¥Ø¼Ðªº¼vÅT©M§@¥Î¡A¤£¨ü¼Ò«¬ÅܼƬۤ¬¿W¥ßªº°²³]±ø¥ó¬ù§ô¡A©Òºc¦¨ªº¼Ò«¬¥i¥H®ø°£´¶³q¦^Âk¹w´ú¤èªk¤¤¥Ñ©ó¤Þ¼Æ¿ï¾Ü¡B¦h«¦@½u©Êµ¥³y¦¨ªº§xÃø¡C 2¡D ²¾°Ê¥§¡MA(q)¼Ò«¬ (1)¼Ò«¬§Î¦¡ yt=£`t-£c1£`t-1-£c2£`t-2-¡K¡K-£cp£`t-p (2)¼Ò«¬§t¸q ¥Î¹L¥h¦UӮɴÁªºÀH¾÷¤zÂZ©Î¹w´ú»~®tªº½u©Ê²Õ¦X¨Óªí¹F·í«e¹w´úÈ¡C AR(p)ªº°²³]±ø¥ó¤£º¡¨¬®É¥i¥H¦Ò¼{¥Î¦¹§Î¦¡¡C Á`º¡¨¬¥Ã±ø¥ó¡A¦]¨ä¤¤°Ñ¼Æ£c¨úȹï®É¶¡§Ç¦Cªº¼vÅT¨S¦³AR¼Ò«¬¤¤°Ñ¼Æpªº¼vÅT±j¯P¡A§Y³oùظû¤jªºÀH¾÷ÅܤƤ£·|§ïÅܮɶ¡§Ç¦Cªº¤è¦V¡C (3)ÃѧO±ø¥ó ·ík>q®É¡A¦³¦Û¬ÛÃö«Y¼Ærk=0©Î¦Û¬ÛÃö«Y¼ÆrkªA±qN(0,1/n(1+2∑r2i)1/2)¥B(|rk|>2/n1/2(1+2∑r2i)1/2)ªºÓ¼Æ≤4.5%¡A§Y¥Ã®É¶¡§Ç¦Cªº¦Û¬ÛÃö«Y¼Ærk¬°q¨BºI§À¡A°¾¬ÛÃö«Y¼Æ£pk³v¨B°I´î¦Ó¤£ºI§À¡A«h§Ç¦C¬OMA(q)¼Ò«¬¡C ¹ê»Ú¤¤¡A¤@¯ëMA¹Lµ{ªºPACF¨ç¼Æ§e³æÃ仼´î©Îªý¥§®¶Àú¡A©Ò¥H¥ÎACF¨ç¼Æ§P§O(±qq¶¥¶}©lªº©Ò¦³¦Û¬ÛÃö«Y¼Æ§¡¬°0)¡C (4)¥i°f±ø¥ó ¤@¶¥¡G|£c1|<1¡C¤G¶¥¡G|£c2|<1¡B£c1+£c2<1¡C ·íº¡¨¬¥i°f±ø¥ó®É¡AMA(q)¼Ò«¬¥i¥HÂà´«¬°AR(p)¼Ò«¬ 3¡D ¦Û¦^Âk²¾°Ê¥§¡ARMA(p,q)¼Ò«¬ (1) ¼Ò«¬§Î¦¡ yt=£p1yt-1+£p2yt-2+¡K¡K+£ppyt-p+£`t-£c1£`t-1-£c2£`t-2-¡K¡K-£cp£`t-p ¦¡¤¤²Å¸¹¡G p©Mq¬O¼Ò«¬ªº¦Û¦^Âk¶¥¼Æ©M²¾°Ê¥§¡¶¥¼Æ¡F £p©M£c¬O¤£¬°¹sªº«Ý©w«Y¼Æ¡F£`t¿W¥ßªº»~®t¶µ¡F yt¬O¥Ã¡B¥¿ºA¡B¹s§¡Èªº®É¶¡§Ç¦C¡C (2) ¼Ò«¬§t¸q ¨Ï¥Î¨âÓ¦h¶µ¦¡ªº¤ñ²vªñ¦ü¤@Ó¸ûªøªºAR¦h¶µ¦¡¡A§Y¨ä¤¤p+qӼƤñAR(p)¼Ò«¬¤¤¶¥¼Æp¤p¡C«e¤GºØ¼Ò«¬¤À§O¬O¸ÓºØ¼Ò«¬ªº¯S¨Ò¡C ¤@ÓARMA¹Lµ{¥i¯à¬OAR»PMA¹Lµ{¡B´XÓAR¹Lµ{¡BAR»PARMA¹Lµ{ªº¡¥[¡A¤]¥i¯à¬O´ú«×»~®t¸û¤jªºAR¹Lµ{¡C (3) ÃѧO±ø¥ó ¥Ã®É¶¡§Ç¦Cªº°¾¬ÛÃö«Y¼Æ£pk©M¦Û¬ÛÃö«Y¼Ærk§¡¤£ºI§À¡A¦ý¸û§Ö¦¬ÀĨì0¡A«h¸Ó®É¶¡§Ç¦C¥i¯à¬OARMA(p,q)¼Ò«¬¡C¹ê»Ú°ÝÃD¤¤¡A¦h¼Æn¥Î¦¹¼Ò«¬¡C¦]¦¹«Ø¼Ò¸Ñ¼Òªº¥Dn¤u§@¬O¨D¸Ñp¡Bq©M£p¡B£cªºÈ¡AÀËÅç£`t©MytªºÈ¡C (4) ¼Ò«¬¶¥¼Æ AIC·Ç«h¡G³Ì¤p¸ê°T·Ç«h¡A¦P®Éµ¹¥XARMA¼Ò«¬¶¥¼Æ©M°Ñ¼Æªº³Ì¨Î¦ôp¡A¾A¥Î©ó¼Ë¥»¸ê®Æ¸û¤Öªº°ÝÃD¡C¥Øªº¬O§PÂ_¹w´ú¥Ø¼Ðªºµo®i¹Lµ{»Pþ¤@ÀH¾÷¹Lµ{³Ì¬°±µªñ¡C¦]¬°¥u¦³·í¼Ë¥»¶q¨¬°÷¤j®É¡A¼Ë¥»ªº¦Û¬ÛÃö¨ç¼Æ¤~«D±`±µªñ¥ÀÅ骺¦Û¬ÛÃö¨ç¼Æ¡C¨ãÅé¹B¥Î®É¡A¦b³W©w½d³ò¤º¨Ï¼Ò«¬¶¥¼Æ±q§C¨ì°ª¡A¤À§OpºâAICÈ¡A³Ì«á½T©w¨Ï¨äȳ̤pªº¶¥¼Æ¬O¼Ò«¬ªº¦X¾A¶¥¼Æ¡C ¼Ò«¬°Ñ¼Æ³Ì¤j¦üµM¦ôp®ÉAIC=(n-d)log£m2+2(p+q+2) ¼Ò«¬°Ñ¼Æ³Ì¤p¤G¼¦ôp®ÉAIC=nlog£m2+(p+q+1)logn ¦¡¤¤¡Gn¬°¼Ë¥»¼Æ¡A£m2¬°ÀÀ¦X´Ý®t¥¤è©M¡Ad¡Bp¡Bq¬°°Ñ¼Æ¡C ¨ä¤¤¡Gp¡Bq½d³ò¤W½u¬On¸û¤p®É¨únªº¤ñ¨Ò¡An¸û¤j®É¨úlognªº¿¼Æ¡C ¹ê»ÚÀ³¥Î¤¤p¡Bq¤@¯ë¤£¶W¹L2¡C 4¡D ¦Û¦^Âkºî¦X²¾°Ê¥§¡ARIMA(p,d,q)¼Ò«¬ (1)¼Ò«¬ÃѧO ¥Ã®É¶¡§Ç¦Cªº°¾¬ÛÃö«Y¼Æ£pk©M¦Û¬ÛÃö«Y¼Ærk§¡¤£ºI§À¡A¥B½wºC°I´î¦¬ÀÄ¡A«h¸Ó®É¶¡§Ç¦C¥i¯à¬OARIMA(p,d,q)¼Ò«¬¡C (2)¼Ò«¬§t¸q ¼Ò«¬§Î¦¡Ãþ¦üARMA¡]p,q¡^¼Ò«¬¡A¦ý¸ê®Æ¥²¶·¸g¹L¯S®í³B²z¡C¯S§O·í½u©Ê®É¶¡§Ç¦C«D¥Ã®É¡A¤£¯àª½±µ§Q¥ÎARMA¡]p,q¡^¼Ò«¬¡A¦ý¥i¥H§Q¥Î¦³¶¥®t¤À¨Ï«D¥Ã®É¶¡§Ç¦C¥Ã¤Æ¡A¹ê»ÚÀ³¥Î¤¤d¤@¯ë¤£¶W¹L2¡C Y®É¶¡§Ç¦C¦s¦b¶g´Á©Êªi°Ê¡A«h¥i«ö®É¶¡¶g´Á¶i¦æ®t¤À¡A¥Øªº¬O±NÀH¾÷»~®t¦³ªø¤[¼vÅTªº®É¶¡§Ç¦CÅܦ¨¶È¦³¼È®É¼vÅTªº®É¶¡§Ç¦C¡C §Y®t¤À³B²z«á·s§Ç¦C²Å¦XARMA(p,q)¼Ò«¬¡Aì§Ç¦C²Å¦XARIMA(p,d,q)¼Ò«¬¡C 3.3.3«Ø¼Ò¸Ñ¼Ò¹Lµ{ 1. ¸ê®Æ®Ö¹ï ÀËÅç®É¶¡§Ç¦C¼Ë¥»ªº¥Ã©Ê¡B¥¿ºA©Ê¡B¶g´Á©Ê¡B¹s§¡È¡A¶i¦æ¥²nªº¸ê®Æ³B²zÅÜ´«¡C (1)§@ª½¤è¹Ï¡GÀËÅ祿ºA©Ê¡B¹s§¡È¡C «ö¹Ï§ÎGraphs¡Xª½¤è¹ÏHistogramªº¶¶§Ç¥´¶}¦p¹Ï3.15©Ò¥Üªº¹ï¸Ü¤è¶ô¡C ¹Ï3.15 ±N¼Ë¥»¸ê®Æ°e¤JÅܼÆVariable®Ø¡A¿ï¤¤Åã¥Ü¥¿ºA¦±½uDisplay normal curve¶µ¡AÂIÀ»OK¹B¦æ¡A¿é¥X±a¥¿ºA¦±½uªºª½¤è¹Ï¡A¦p¹Ï3.16©Ò¥Ü¡C ¹Ï3.16 ±q¹Ï¤¤¬Ý¥X¡G¼Ð·Ç®t¤£¬°1¡B§¡Èªñ¦ü¬°0¡A¥i¯à»Ýn¶i¦æ¸ê®ÆÅÜ´«¡C (2)§@¬ÛÃö¹Ï¡GÀËÅç¥Ã©Ê¡B¶g´Á©Ê¡C «ö¹Ï§ÎGraphs¡X®É¶¡§Ç¦CTime Series¡X¦Û¬ÛÃöAutocorrelationsªº¶¶§Ç¥´¶}¦p¹Ï3.17©Ò¥Üªº¹ï¸Ü¤è¶ô¡C ¹Ï3.17 ±N¼Ë¥»¸ê®Æ°e¤JÅܼÆVariable®Ø¡A¿ï¤¤¦Û¬ÛÃöAutocorrelations©M°¾¦Û¬ÛÃöPartial Autocorrelations¶µ¡A¼È¤£¿ï¸ê®ÆÂà´«Transform¶µ¡AÂIÀ»³]¸m¶µOptions¡A¥X²{¦p¹Ï3.18©Ò¥Ü¹ï¸Ü¤è¶ô¡C ¹Ï3.18 ¦]¬°¤@¯ën¨D®É¶¡§Ç¦C¼Ë¥»¸ê®Æn>50¡Aº¢«á¶g´Ák<n/4¡A©Ò¥H¦¹³B±±¨î³Ì¤jº¢«á¼ÆÈMaximum Number of Lags³]©w¬°12¡CÂIÀ»Ä~ÄòContinueªð¦^¦Û¬ÛÃö¥D¹ï¸Ü¤è¶ô«á¡AÂIÀ»OK¹B¦æ¨t²Î¡A¿é¥X¦Û¬ÛÃö¹Ï¦p¹Ï3.19©Ò¥Ü¡C ¹Ï3.19 ±q¹Ï¤¤¬Ý¥X¡F¼Ë¥»§Ç¦C¸ê®Æªº¦Û¬ÛÃö«Y¼Æ¦b¬Y¤@©T©w¤ô¥½uªþªñÂ\°Ê¡A¥B«ö¶g´Á©Ê³vº¥°I´î¡A©Ò¥H¸Ó®É¶¡§Ç¦C°ò¥»¬O¥Ãªº¡C (3)¼Æ¾ÚÅÜ´«¡G Y®É¶¡§Ç¦Cªº¥¿ºA©Ê©Î¥Ã©Ê¤£°÷¦n¡A«h»Ý¶i¦æ¸ê®ÆÅÜ´«¡C±`¥Î¦³®t¤ÀÅÜ´«(§Q¥Îtransform¡XCreate Time Series)©M¹ï¼ÆÅÜ´«(§Q¥ÎTransform¡XCompute)¶i¦æ¡C¤@¯ë»Ý¤Ï´_ÅÜ´«¡B¤ñ¸û¡Aª½¨ì¸ê®Æ§Ç¦Cªº¥¿ºA©Ê¡B¥Ã©Êµ¥¹F¨ì¬Û¹ï³Ì¨Î¡C 2. ¼Ò«¬ÃѧO ¤ÀªR®É¶¡§Ç¦C¼Ë¥»¡A§P§O¼Ò«¬ªº§Î¦¡Ãþ«¬¡A½T©wp¡Bd¡Bqªº¶¥¼Æ¡C (1)§P§O¼Ò«¬§Î¦¡©M¶¥¼Æ ①¬ÛÃö¹Ïªk¡G ¹B¦æ¦Û¬ÛÃö¹Ï«á¡A¥X²{¦Û¬ÛÃö¹Ï¡]¹Ï3.19¡^©M°¾¦Û¬ÛÃö¹Ï¡]¹Ï3.20¡^¡C ¹Ï3.20 ±q¹Ï¤¤¬Ý¥X¡G¦Û¬ÛÃö«Y¼Æ©M°¾¬ÛÃö«Y¼Æ¨ã¦³¬Û¦üªº°I´î¯SÂI¡G°I´î§Ö¡A¬Û¾F¤GÓȪº¬ÛÃö«Y¼Æ¬ù¬°0.42¡Aº¢«á¤GÓ¶g´ÁªºÈªº¬ÛÃö«Y¼Æ±µªñ0.1¡Aº¢«á¤TÓ¶g´ÁªºÈªº¬ÛÃö«Y¼Æ±µªñ0.03¡C©Ò¥H¡A°ò¥»¥i¥H½T©w¸Ó®É¶¡§Ç¦C¬°ARMA¡]p,q¡^¼Ò«¬§Î¦¡¡A¦ýÁÙ¤£¯à½T©w¬OARMA¡]1,1¡^©Î¬OARMA¡]2,2¡^¼Ò«¬¡C¦ýY«e¥|Ó¦Û¬ÛÃö«Y¼Æ¤À§O¬°0.40¡B0.16¡B0.064¡B0.0256¡A«h¥i¥H¦Ò¼{¥ÎAR(1) ¼Ò«¬¡C ¥t¥~¡Aȱo»¡©úªº¬O¡G¥u¬OARMA¼Ò«¬»ÝnÀËÅç®É¶¡§Ç¦Cªº¥Ã©Ê¡AY¸Ó§Ç¦Cªº°¾¦Û¬ÛÃö¨ç¼Æ¨ã¦³ÅãµÛ©Ê¡A«h¥i¥Hª½±µ¿ï¾Ü¨Ï¥ÎAR¼Ò«¬¡C ¹ê»Ú¤W¡A¨ãÅéÀ³¥Î¦Û¬ÛÃö¹Ï¶i¦æ¼Ò«¬¿ï¾Ü®É¡A¦bÆ[¹îACF»PPACF¨ç¼Æ¤¤¡AÀ³ª`·NªºÃöÁä°ÝÃD¬O¡G¨ç¼ÆÈ°I´îªº¬O§_§Ö¡F¬O§_©Ò¦³ACF¤§©M¬°-0.5¡A§Y¶i¦æ¤F¹L«×®t¤À¡F¬O§_ACF»PPACFªº¬Y¨Çº¢«á¶µÅãµÛ©M®e©ö¸ÑÄÀªº®pȵ¥¡C¦ý¬O¡A¶È¨Ì¿àACF¹Ï§Î¶i¦æ®É¶¡§Ç¦Cªº¼Ò«¬ÃѧO¬O¤ñ¸û§xÃøªº¡C ②°Ñ¼Æ¦ôp¡G ±q(m,m-1)¶}©l¸ÕÅç¡A¤@¯ë¨ìm=p+q=1/n¡C¹ê»ÚÀ³¥Î¤¤¡A©¹©¹±q(1,1)¡B¡K¡K¡B(2,2)¡A³vÓpºâ¤ñ¸û¥¦ÌªºAICÈ¡]©ÎSBCÈ¡^¡A¨ú¨äȳ̤pªº½T©w¬°¼Ò«¬¡C (2)«Ø¥ß®É¶¡§Ç¦C·sÅÜ¼Æ µL½×¬OþºØ¼Ò«¬§Î¦¡¡A®É¶¡§Ç¦CÁ`¬O¨ü¦Û¨¾ú¥v¸ê®Æ§Ç¦CÅܤƪº¼vÅT¡A¦]¦¹»Ý±N¾ú¥v¸ê®Æ§Ç¦C§@¬°¤@Ó·sªº®É¶¡§Ç¦CÅܼơC «ö¸ê®ÆÂà´«transform¡X«Ø¥ß®É¶¡§Ç¦CCreate Time Seriesªº¶¶§Ç®i¶}¹ï¸Ü¤è¶ô¡A¹Ï3.21¡C ¹Ï3.21 ①¦b¥\¯àFunction¤U©Ô²M³æ¤¤¿ï¾ÜÅܼÆÂà´«ªº¨ç¼Æ¡A¨ä¤¤¡G «D©u¸`®t¤ÀDifferences: pºâ®É¶¡§Ç¦C³sÄòȤ§¶¡ªº«D©u¸`©Ê®t²§¡C ©u¸`©Ê®t¤ÀSeasonal Differences: pºâ®É¶¡§Ç¦C¸ó¶Z¶¡¹jùÚ©wȤ§¶¡ªº©u¸`©Ê®t²§¡A¸ó¶Z®Ú¾Ú©w¸qªº¶g´Á½T©w¡C »â¥ý²¾°Ê¥§¡Prior moving average:pºâ¥ý«eªº®É¶¡§Ç¦C¼ÆÈªº¥§¡È¡C ¤¤¤ß²¾°Ê¥§¡Centered moving average:pºâ³ò¶©M¥]¬A·í«eȪº®É¶¡§Ç¦C¼ÆÈªº¥§¡È¡C ¤¤¦ì¼ÆRunning medians:pºâ³ò¶©M¥]¬A·í«eȪº®É¶¡§Ç¦Cªº¤¤¦ì¼Æ¡C ²Ö¿n©MCumulative sum:pºâª½¨ì¥]¬A·í«eȪº®É¶¡§Ç¦C¼ÆÈªº²ÖpÁ`¼Æ¡C º¢«á¶¶§ÇLag: ®Ú¾Ú«ü©wªºº¢«á¶¶§Ç¡Apºâ¦b«eÆ[´ú¶qªºÈ¡C »â¥ý¶¶§ÇLead:®Ú¾Ú«ü©wªº»â¥ý¶¶§Ç¡Apºâ³sÄòÆ[´ú¶qªºÈ¡C ¥·ÆSmoothing:¥H²V¦X¸ê®Æ¥·Æ¬°°ò¦¡Apºâ³sÄòÆ[´ú¶qªºÈ¡C ¥H¤W¦U¶µ¥Dn¥Î¦b¥Í¦¨®t¤ÀÅܼơBº¢«áÅܼơB¥²¾ÅܼơA¨Ã¥BÁÙnÃöª`®t¤À¡Bº¢«á¡B¥²¾ªº¦¸¼Æ¡A¥H«K¦b«Ø¥ß¼Ò«¬¡B¶i¦æ°Ñ¼Æ¦ôp®É¡A¨Ï¤èµ{¹F¨ì¤@P¡C ②¦b¶¶§ÇOrder®Ø¤¤¶ñ¤J¦b«e©Î¦b«áªº®É¶¡§Ç¦C¼ÆÈ¶¡¹jªº¼Æ¥Ø¡C ¦b·sÅܼÆNew Variable®Ø¤¤±µ¨ü¥ªÃ䮨²¾¨Óªº·½ÅܼơC ¦b¦WºÙName®Ø¤¤©w¸q·sÅܼƪº¦WºÙ¡A¦ý¥²³æÀ»§ïÅÜChange¤è¯à¦¨¥ß¡C ③³æÀ»OK¹B¦æ¨t²Î¡A¦bì¸ê®Æ®w¤¤¥X²{·sÅܼƦC¡C ¥t¥~¡AY»Ý²£¥Í¶g´Á©Ê®É¶¡§Ç¦Cªº¤é´Á«¬ÅܼơA«h«ö¸ê®ÆData¡X©w¸q¤é´ÁDefine Datesªº¶¶§Ç®i¶}¦p¹Ï3.22©Ò¥Ü¹ï¸Ü¤è¶ô¡C ¹Ï3.22 ¦b¼Ë¥»Cases AreÄæ¤¤¿ï¾Ü©w¸q¤é´ÁÅܼƪº®É¶¡¶¡¹j¡A¦b°_©l¤é´ÁFirst Case IsÄæ¤¤³]©w¤é´ÁÅܼƲĤ@ÓÆ[´ú¶qªºÈ¡A³æÀ»OK§¹¦¨©w¸q¡C 3. °Ñ¼Æ¦ôp ±Ä¥Î³Ì¤j¦üµM¦ôp©Î³Ì¤p¤G¼¦ôpµ¥¤èªk¦ôp£p¡B£c°Ñ¼ÆÈ¡A¨Ã¶i¦æÅãµÛ©ÊÀËÅç¡C «ö¤ÀªRAnalyze¡X®É¶¡§Ç¦CTime series¡XARIMA¼Ò«¬ªº¶¶§Ç®i¶}¦p¹Ï3.23¹ï¸Ü¤è¶ô¡C ¹Ï3.23 ¦b¹Ï3.23¤¤¡G ¿ï¾Üì®É¶¡§Ç¦CÅܼƶi¤J¦]ÅܼƮءF ®Ú¾Ú¼Ò«¬ÃѧOµ²ªG©M«Ø¥ßªº·s®É¶¡ÅܼơA¿ï¾Ü¤@өΦhÓÅܼƶi¤J¤Þ¼Æ®Ø¡F¼È®É¤£¶i¦æ¦]Åܼƪº¸ê®ÆÂà´«¡F »P¤Þ¼Æªº¿ï¾Ü¹ïÀ³¡A®Ú¾Ú¼Ò«¬ÃѧOµ²ªG©Î¹êÅ窺«ä¸ô³]©wp¡B(d)¡BqªºÈ¡F¿ï¾Ü¼Ò«¬¤¤¥]§t±`¼Æ¶µ¡F ¤À§O³æÀ»«O¦s©M³]¸m«ö¶s¡A®i¶}¦p¹Ï3.24©M3.25¹ï¸Ü¤è¶ô¡C ¹Ï3.24 ¹Ï3.24¤¤¡G ¦b«Ø¥ßÅܼÆCreate VariableÄæ¿ï¾Ü·s«ØÅܼƵ²ªG¼È¦sì¸ê®ÆÀÉ®×Add to file¶µ¡A¤]¥i¿ï¾Ü¥Î·s«ØÅܼƥN´Àì¸ê®ÆÀɮפ¤pºâµ²ªGReplace existing¶µ¡F ¦b³]©w¸m«H°Ï¶¡¦Ê¤À¤ñ%Confidence Intervals¤U©Ô²M³æ¿ï¾Ü95¡F ¦b¹w´ú¼Ë¥»Predict CasesÄæ¿ï¾Ü®Ú¾Ú®É´Áµ¹¥X¹w´úµ²ªGªº¤èªk¡C ¹Ï3.25 ¹Ï3.25¤¤¡G ¦b¦¬ÀļзÇConvergence CriteriaÄæ¿ï¾Ü¡¥N¦¸¼ÆMaximum iterations¡B°Ñ¼ÆÅܤƺë«×Parameter change¡B¥¤è©MÅܤƺë«×Sum of squares change¡A·í¹Bºâ¹F¨ì¨ä¤¤¤@ӰѼƪº³]©w¡A«h¡¥N²×¤î¡F ¦b¦ôpªì©lÈInitial Values for EstimationÄæ¿ï¾Ü¥Ñ¹Lµ{¦Û°Ê¿ï¾ÜAutomatic©Î¥Ñ¥ý«e¼Ò«¬´£¨ÑApply from previous model¡A¤@¯ëÀq»{«eªÌ¡F ¦b¹w´ú¤èªkForecasting MethodÄæ¿ï¾ÜµL±ø¥óUnconditional©Î¦³±ø¥ó³Ì¤p¤G¼ªkConditional least squares¡F ¦b¿é¥X±±¨îDisplayÄæ¿ï¾Ü³Ìªì©M³Ì²×°Ñ¼Æªº¡¥NºKnInitial and final parameters with iteration summary©Î¸Ô²Ó¸ê®Ædetails¡B©Î¥uÅã¥Ü³Ì²×°Ñ¼ÆFinal parameters only¡C ³æÀ»OK¡A¨t²Î¥ß§Y°õ¦æ¡A¿é¥X¸ê°T¦p¤U¡G MODEL: MOD_1 Split group number: 1 Series length: 48 No missing data. Melard's algorithm will be used for estimation. Conclusion of estimation phase. Estimation terminated at iteration number 7 because:Sum of squares decreased by less than .001 percent. FINAL PARAMETERS: Number of residuals 48 Standard error 1.1996949 Log likelihood -75.463915 AIC 156.92783 SBC 162.54143 Analysis of Variance: DF Adj. Sum of Squares Residual Variance Residuals 45 65.099923 1.4392678 Variables in the Model: B SEB T-RATIO APPROX. PROB. AR1 .02318739 .31945836 .0725835 .94245925 MA1 -.44871554 .28829314 -1.5564558 .12660552 CONSTANT -.02421308 .25505018 -.0949346 .92478827 The following new variables are being created: Name Label FIT_1 Fit for ¼Ë¥»¸ê®Æ from ARIMA, MOD_1 CON ERR_1 Error for ¼Ë¥»¸ê®Æ from ARIMA, MOD_1 CON LCL_1 95% LCL for ¼Ë¥»¸ê®Æ from ARIMA, MOD_1 CON UCL_1 95% UCL for ¼Ë¥»¸ê®Æ from ARIMA, MOD_1 CON SEP_1 SE of fit for ¼Ë¥»¸ê®Æ from ARIMA, MOD_1 CON ¦UÓ¿é¥X²Îp¶qªº·N¸q¡G ±`¼Æ¶µ¡G»{¬°¬O¨úÈùÚ¬°1ªº±`¼ÆÅܼơA¨ä«Y¼Æ´N¬O¤Þ¼Æ¬°0®É¦]Åܼƪº³ÌÀu¹w´úÈ¡A¤]ºÙ¬°¹w´ú°ò·ÇÈ¡C ¨t ¼Æ¡G¤Ï¬M¤Þ¼Æ¹ï¦]ÅܼƼvÅTªºÅv«¡C ¼Ð·Ç»~¡Gªí©ú¼Ë¥»¸ê®Æªº¥i¾a©Ê¡C¦b(´Ý®t)°Ñ¼Æªñ¦üªA±q¥¿ºA¤À§G±ø¥ó¤U¡A«Y¼Æ¥[´î¨â¿ªº¼Ð·Ç»~®tªñ¦üµ¥©óÁ`Åé°Ñ¼Æ95%ªº¸m«H°Ï¶¡¡C¨äȶV¤p¡A¸m«H°Ï¶¡¶V¯¶¡F¨Ã¥B¨ä¹ï©ó«Y¼Æªº¬Û¹ïȶV¤p¡A¦ôpµ²ªG¶Vºë½T¡C t²Îp¶q¡G¦ôp«Y¼Æ»P¼Ð·Ç»~®tªº¤ñÈ¡AÀËÅçÅܼƪº¤£¬ÛÃö©Ê¡C¤@¯ëµ¹©w5%ÅãµÛ¤ô·Ç¡A«h©Úµ´ì°²³]ªº0Ȧì©ó95%ªº¸m«H°Ï¶¡¥~¡A¨äµ´¹ïÈ¥²¤j©ó2¡C t·§²vÈ¡G¨äȶV¤p¡A«h©Úµ´ì°²³]¤£¬ÛÃö©ÊªºÃÒ¾Ú¶V¥R¤À¡C¨äȱµªñ0.05»Pt²Îp¶q±µªñ2¬Û¹ïÀ³¡C §¡ È¡G«×¶qÅܼƪº¶°¤¤«×¡A¶Ç»¼ÀH¾÷Åܼƪº¦ì¸m¸ê°T¡C ¼Ð·Ç®t¡G«×¶qÅܼƪºÂ÷´²«×¡A¶Ç»¼ÀH¾÷Åܼƪº³W¼Ò¸ê°T¡C ¥¤è©M¡G´Ý®t¥¤è©M¬O³\¦h²Îp¶qªº²Õ¦¨³¡¤À¡A©t¥ß¦Ò¹îµL¤Ó¤j»ùÈ¡C ã «h¡G¸ê°T·Ç«hAIC©MSBC¥Î©ó¼Ò«¬ªº¿ï¾Ü¡A¶V¤p¶V¦n¡A¦ý¨ü¦Û¥Ñ«×¬ù§ô¸û¬°ÄY«¡C R2®Õ¥¿¡G¬O¼Ò«¬¤¤¤Þ¼Æ¹ï¦]ÅܼÆÅܰʪº¸ÑÄÀ¤ñ¨Ò¡A«×¶q¤èµ{¹w´ú¦]Åܼƪº¦¨¥\µ{«×¡A¨ä¬O¦^Âk¼Ð·Ç»~®t»P¦]ÅܼƼзǮt¤ñ¸ûªºµ²ªG¡C¥t¤@Ó¤ñ¸û¤èªk¬O¦^Âk¼Ð·Ç»~®t¤£¶W¹L¦]ÅܼƧ¡Èªº10%«h¬°¦nªº¼Ò«¬¡C DW²Îp¡G¥Î©óÀËÅçÀH¾÷»~®t¶µ¬O§_¦s¦b§Ç¦C¬ÛÃö¡C LN¦üµM¡G¥Î©ó¼Ò«¬¤ñ¸û©M°²³]ÀËÅç¡A¶V¤j¶V¦n¡C ´Ý®t¹Ï¡G 4. ¼Ò«¬ÀËÅç ÀËÅç·s«Ø¼Ò«¬ªº¦X²z©Ê¡CYÀËÅ礣³q¹L¡A«h½Õ¾ã(p,q)È¡A«·s¦ôp°Ñ¼Æ©MÀËÅç¡A¤Ï´_¶i¦æª½¨ì±µ¨ü¬°¤î¡C¦ý¼Ò«¬ÃѧO¡B°Ñ¼Æ¦ôp¡BÀËÅç×¥¿¤TÓ¹Lµ{¤§¶¡¬Û¤¬§@¥Î¡B¬Û¤¬¼vÅT¡A¦³®É»Ýn¥æ¤e¶i¦æ¡B¤Ï´_¹êÅç¡A¤~¯à³Ì²×½T©w¼Ò«¬§Î¦¡¡C (1)¬ÛÃö¹ÏÀËÅç´Ý®t¥ÕÂø°T¡G ¦]¬°¥ÕÂø°T¹Lµ{¬O§Ç¦CµLÃöªº¡A©Ò¥H¥ÕÂø°T¹Lµ{ªº¦Û¬ÛÃö¨ç¼Æ©M°¾¦Û¬ÛÃö¨ç¼Æ¦b¦Û¬ÛÃö¹Ï¤¤§¡¬°µ¥©ó0ªº¤ô·Çª½½u¡C (2)´²ÂI¹ÏÀËÅç´Ý®t¿W¥ß©Ê¡G ¥H»~®tȬ°Áa§¤¼Ð¡B¥H¹w´úȬ°¾î§¤¼Ð¡AÆ[¹î´²ÂI¤À§Gªº§¡¤Ã©Ê¡BÀH¾÷©Ê¡C ²z·Q¹w´ú¼Ò«¬ªº¹w´ú»~®t¤@©w¬O¤£¥i¹w´úªº¡BµL³W«ßªº¡B§Ç¦CµLÃöªº¡C ¬ÛÀ³ªºDW²Îp¶q¶È¾A¥ÎÀËÅç¤@¶¥§Ç¦C¡C (3)ª½¤è¹ÏÀËÅç´Ý®t¹s§¡È¡G ¹s§¡È¶ÈÀËÅç´Ý®t§Ç¦CµLÃö¡AY¥¿ºA¤À§G«hÀËÅç¿W¥ß©Ê¡C (4)·§²v¹ÏÀËÅç´Ý®t¦Û¬ÛÃö¡G¥HÅãµÛ©Ê¤ô·Ç0.05pºâ£q2()·§²vÈ¡A¡C (5)§¡¤è®tÀËÅç¹w´úªº®ÄªG¡G¥H¹w´ú»~®tªº§¡¤è®t³Ì¤p¬°¼Ð·Ç¡Aª`·N¹w´ú»~®t¶È»P¹w´ú¶g´Á¦³Ãö¡A¦Ó»P°_©l®É¨èµLÃö¡C 5. ¼Ò«¬¹w´ú ¹w´ú¨t²Î¬ã¨sª«¥óªº¥¼¨Ó¬Y®É¨èª¬ºA¡C¦C¥X¹w´ú¼Ò«¬¡Apºâ¹w´úÈ¡C ¸ê®Æ¨Ó·½-macd
|